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Boring admin stuff

• Assignment 2 is out – start early!
• Post questions on discussion board (error messages helpful)

• RMarkdown video
• Grades for assignment 1 are out
• TEAM mentors
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The problem

If we allow units to self-select into the treatment, we end up with
a problem

• The units that choose the treatment are systematically
different
• People go to the hospital because, if they didn’t, they would

be very sick
• Students come to OHs because they’re interested in the

content
• If they didn’t come to OHs (counterfactual), they would

probably do well regardless
• In terms of POs…

• The potential outcome under control for those who
self-selected into the treatment is different, on average, than
the potential outcome under control for those who self-selected
into the control 3



The solution

To avoid this problem, we use random assignment of the
treatment; we’ll call this an experiment

• Units no longer self-select into treatment

• The researcher “decides” who gets the treatment
• By “decide” we mean: randomly choose who gets treatment

• What does this do? Any ideas?
• It solves the selection bias

• On average, treated and control units should be very similar
• Intuitively: there is nothing dissimilar between the treated and

control units, except for the application of treatment
• Hence, if there is a difference in outcome between the two

groups, it must be because of the treatment
• In terms of POs: had the treated units not been treated, their

outcome would be the same, on average, as the control units
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Randomization and the FPCI

Have we solved the FPCI?

• Well, we still can’t observed both POs for any given unit
• But we’ve constructed a plausible counterfactual
• We are able to say:

• I can’t see 𝑌𝑖(0) for the treated units
• But if I can assume that it is the same as 𝑌𝑖(0) for the control

units
• Which we do observe!
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Randomization example

Gerber, Green and Larimer (2008) are interested in the motivation
to vote

• A long tradition in political science considers voting as
individually irrational

• What’s the benefit of voting?
• What’s the cost of voting?

Pr(Voting) = P*B - C + D
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Randomization example

Context: 2006 primary elections in Michigan

• In the US, voting records are public
• Mailers to about 180,000 households
• 5 conditions:

• Control: 𝑌𝑖(0)
• “Civic Duty”: 𝑌𝑖(𝐶𝑖𝑣𝑖𝑐𝐷𝑢𝑡𝑦)
• “Hawthorne”: 𝑌𝑖(𝐻𝑎𝑤𝑡ℎ𝑜𝑟𝑛𝑒)
• “Self”: 𝑌𝑖(𝑆𝑒𝑙𝑓)
• “Neighbors”: 𝑌𝑖(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

• Outcome 𝑌𝑖: whether subject voted (1/0)
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Randomization example: Civic duty condition
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Randomization example: Neighbors condition
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Randomization example: the data

voting <- read.csv("lectures/lecture_4.2/gerber.csv")
cols <- c("female", "yob", "voting", "hawthorne",

"civicduty", "neighbors", "self", "control")
voting <- voting[,cols]
kable(head(voting))

female yob voting hawthorne civicduty neighbors self control

0 1941 0 0 1 0 0 0
1 1947 0 0 1 0 0 0
1 1982 1 1 0 0 0 0
1 1950 1 1 0 0 0 0
0 1951 1 1 0 0 0 0
1 1959 1 0 0 0 0 1
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Randomization example: the data

dim(voting)

## [1] 344084 8

table(voting$voting)

##
## 0 1
## 235388 108696
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Randomization example: Turnout in the control

voting_control <- voting[voting$control==1,] # subsetting the data
mean(voting_control$voting) # mean of dummy = proportion

## [1] 0.2966383

What’s your hunch as to the size of the treatment effect?

12



Randomization example: Turnout in the control

voting_control <- voting[voting$control==1,] # subsetting the data
mean(voting_control$voting) # mean of dummy = proportion

## [1] 0.2966383

What’s your hunch as to the size of the treatment effect?

12



Randomization example: The results

Who wants to interpret this?

• “Direction”: Positive or negative effect?
• “Magnitude”: How large is the effect?

• Domain expertise is important in contextualizing
• Do you think this is a large effect?

• Can be interpreted causally?
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Randomization example: Causal effect?

Who wants to try to interpret this?

• Randomization “works” ⇝ groups are the same
• The same in terms of POs under control (can we confirm?)
• And the same in terms of pre-treatment covariates

• Pre-treatment covariate: a variable that is not/cannot be
affected by the treatment
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Experimental vs observational

In experimental research…

• The researcher has control over the treatment assignment
mechanism

• Specifically, units are randomly assigned to different
experimental conditions

In observational research…

• The researcher gathers data on the units without having
influence on treatment assignment

• Units self-select into different values of the treatment/IV
• More about this later

15



Experimental vs observational

In experimental research…

• The researcher has control over the treatment assignment
mechanism

• Specifically, units are randomly assigned to different
experimental conditions

In observational research…

• The researcher gathers data on the units without having
influence on treatment assignment

• Units self-select into different values of the treatment/IV
• More about this later

15



Experimental vs observational

In experimental research…

• The researcher has control over the treatment assignment
mechanism

• Specifically, units are randomly assigned to different
experimental conditions

In observational research…

• The researcher gathers data on the units without having
influence on treatment assignment

• Units self-select into different values of the treatment/IV
• More about this later

15



Experimental vs observational

In experimental research…

• The researcher has control over the treatment assignment
mechanism

• Specifically, units are randomly assigned to different
experimental conditions

In observational research…

• The researcher gathers data on the units without having
influence on treatment assignment

• Units self-select into different values of the treatment/IV
• More about this later

15



Internal and external validity

Experimental and observational approaches are often compared in
terms of validity

• Internal validity: The more plausible the claim about
causality, the higher the internal validity

• External validity: The results of the study can be generalized
to the real world or beyond the case at hand
• Remember: generality is an important scientific principle
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Different types of experiments

• Lab experiment: The “classic” experiment. Units are brought
to the “lab,” a controlled environment where the study takes
place
• More common before the Internet!
• Advantage? Disadvantages?

• Field experiment: takes place “in-the-field”
• “aim to reproduce the environment in which the phenomenon

of interest naturally occurs” Gerber (2011, 116)
• Peyton et al. (2019): community policing and perceived

legitimacy of police
• Wantchekon (2003): randomly assigns clientelist policy

platforms
• Advantages/disadvantages?

• Survey experiment: embedded in a survey
• e.g. randomly assign “global warming” or “climate change”
• Advantages/disadvantages?
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Why not randomize everything?

If randomization is so powerful, why not randomize everything?

• There are some things we just can’t randomize!
• Either for ethical reasons – e.g. smoking
• Or for more fundamental reasons – did civil rights protests in

the 1960s influence vote choice? (Wasow 2020)
• Experiments sometimes have limited external validity

• Iyengar et al.’s (1982) lab experiments on media effects

Still useful to think about the “experimental ideal”

• If I could conduct an experiment, what would it look like?

And look for randomness inherent to the world

18
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Butler and Broockman

• What sort of experiment do they conduct?
• Internal and external validity?
• What do they conclude, and how convincing is it?
• Any drawbacks to their design?

19



The search for quasi-experiments

Our last type of experiment: quasi-experiments/natural
experiments

• Except it’s not really an experiment!
• The researcher does not have control over the treatment

assignment mechanism
• Instead, we’ll say the treatment is as-if random
• No one randomized the treatment
• Instead, “nature” took care of that for us

Examples of randomness we could exploit?
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Some examples of randomness we can exploit

• What is the effect of judge’s personal circumstances on their
decisions?
• Having a daughter: causes more feminist decisions by US

judges (Glynn and Sen 2015)

• What is the effect of socio-economic status on attitudes
toward redistribution?
• Lottery winners and attitudes toward redistribution (Doherty,

Gerber, and Green 2006)
• What is the effect of enrolling in the army on political

attitudes?
• The Vietnam draft lottery (Erikson and Stoker 2011)

• Do autocratic regimes depend on their leaders?
• The success or failure of assassination attempts and future

democratization (Jones and Olken 2009)

21
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Observational research

We frequently can’t randomize or find a quasi-experiment

• So we are left with observational data
• Observational data is not useless – far from it!
• But it can be harder to establish causality

The typical problem: spurious relationships

• An observed relationship between x and y, but not a causal
one

• Why? The relationship is confounded by some variable z
• Z confounds the relationship between x and y if it is correlated

with both
• These spurious relationships show up a lot in observational

research
• They can trick you into thinking there’s a causal effect – even

when there’s not! 22



Examples of spuriousness

• Correlation between sleeping with shoes and waking up with a
headache
• What’s a potential confounder here?

• Being drunk!
• Any other examples?

The total observed association between X and Y is: a mixture of
causal and confounding association

• Once I “control” for z, there may be no relationship between
X and Y

• Once I “control” for z, the relationship between X and Y may
be weaker

• Once I “control” for z, the relationship between X and Y may
change direction

23
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Many sources of spuriousness

The problem with observational research is that there may be
many such z variables!

• i.e. many variables may confound the relationship between x
and y

• In which case, to recover the true causal effect, I would need
to “control for” all of these confounders

Let’s think of the example: office hours -> grade in the class

• What are some potential confounders here?

24
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Is this class causing better outcomes?

25



Concluding our section on causality

Main takeaways:

• The FPCI makes things difficult; adjust confidence
accordingly!

• A lot of observed correlations are non-causal
• Randomization “solves” the selection problem and makes

inferring causality much easier
• But not always possible! So look for randomness inherent to

the world

26
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